Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

نویسندگان

  • Hocheon Yoo
  • Matteo Ghittorelli
  • Edsger C. P. Smits
  • Gerwin H. Gelinck
  • Han-Koo Lee
  • Fabrizio Torricelli
  • Jae-Joon Kim
چکیده

Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective remanent ambipolar charge transport in polymeric field-effect transistors for high-performance logic circuits fabricated in ambient.

Ambipolar polymeric field-effect transistors can be programmed into a p- or n-type mode by using the remanent polarization of a ferroelectric gate insulator. Due to the remanent polarity, the device architecture is suited as a building block in complementary logic circuits and in CMOS-compatible memory cells for non-destructive read-out operations.

متن کامل

Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementar...

متن کامل

Ambipolar electronics

Ambipolar conduction, characterized by a superposition of electron and hole currents, has been observed in many next-generation devices including carbon nanotube, graphene, silicon nanowire, and organic transistors. This paper describes exciting new design opportunities in both analog and digital domains, all of which are inspired by the ability to control ambipolarity during circuit operation....

متن کامل

Ambipolar MoTe2 transistors and their applications in logic circuits.

We report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed. The ambipolarity of the charge transport originated from the formation of Schottky barriers at the metal/MoTe2 contacts. The Schottky barrier heights as well as the current on/off ratio could be modified by modulating...

متن کامل

Logic Synthesis for Ambipolar FETs

Double-Independent-Gate (DIG) Field Effect Transistors (FETs) are expected to extend Moore’s law in the coming years. Many emerging technologies present the possibility to have DIG FETs with one gate controlling online the device polarity. Such devices are called ambipolar transistors and efficiently embed the XOR function. Logic gates based on ambipolar transistors can implement more complex l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016